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1.  INTRODUCTION 

The concept of Multi valued contraction mapping was initiated by Nadler[1] and Markin[2]. Results for stability of  fixed 

points for  multi valued mappings have been discussed in many authors[3-10]. This paper deals with some common fixed 

point theorems which are established for multi valued mapping in complex valued metric space with rational inequality in 

complex valued metric space. Azam et al.(numer.Funct.anal.Optim.33(5):590-600,2012) introduced the notion of 

complex valued metric space and proved some common fixed point theorems in the context of complex valued metric 

space, we will use rational inequality  for two muti-valued mapping. 

Let us recall a natural relation on  , for z1,z2  , define a partial order ≾ on               

z1≾z2  iff Re(z1)  Re(z2), Im(z1)  Im(z2) 

it follows that 

z1≾z2   

if one of the following conditions is satisfied: 

a) Re(z1) Re(z2), Im(z1) Im(z2) 

b) Re(z1) Re(z2), Im(z1) Im(z2) 

c) Re(z1) Re(z2), Im(z1) Im(z2) 

d) Re(z1) Re(z2), Im(z1) Im(z2) 

In particular, we will write z1 z2 if z1≠z2 and one of a),b),c),d) is not satisfied and we will write z1≺z2 if only (d) is 

satisfied. Note that 

0≾ z1 z2⇨|z1|<|z2|, 

z1≾z2  , z1≺z2⇨ z1≺z3 

Definition 1.2let X be a nonempty set. A mapping d:X xX→  satisfies the following conditions 

(CM1) 0 ≾ d(x,y) for all x,y   and d(x,y)=0 x=y. 

(CM2) d(x,y)=d(y,x) for all x,y   
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(CM3) d(x,y) ≾d(x,z)+d(z,y) for all x,y,z  . 

Then d is called a complex valued metric on X and(X,d) is called a complex valued metric space. 

It is obvious that this concept is generalization of the classic metric. In fact, if d:X x X→   satisfies( (CM1)-(CM3)), then 

this d is a metric in the classical sense, that is, the following conditions are satisfies: 

(M1) 0   d(x,y) for all x,y   and d(x,y)=0 x=y. 

(M2) d(x,y)=d(y,x) for all x,y   

(M3) d(x,y)  d(x,z)+d(z,y) for all x,y,z  . 

There are so many more different and interesting type of metric spaces and classical theories of metric space for example 

see[3,4]. 

Example 1.3.Let  X=  . Define the mapping d : X x X→   by 

d(z1,z2) =   |z1-z2|, for all z1,z2 X. 

Then (X,d) is a complex valued metric space. 

Definitions 1.4.Let   be a complex valued metric space, 

 We say that a sequence {xn} is said to be a Cauchy sequence be a sequence in x  X If for every    , with 0≺  there 

is n0  such that for all n>n0 such thatd(xn,xm)≺ . 

 We say that a sequence {xn} converges to an element xIf for every x  , with 0≺  there exist an integer n0  such that 

for all n>n0 such that d(xn,x)≺  and we write xn 
 
→x. 

 We say that (x,d) is complete if every Cauchy sequence in X converges to a point in X. 

1.1 Main Result: 

Let (X,d) be a complex valued metric space. 

Let family of non-empty, closed and bounded subsets of a complex valued metric space is denoted by CB(X). 

we denote s(z1)={z2    z1≾ z2} for z1  , and s(a,b)=⋃  ( (   ))     ⋃ *      (   ) ≾  +                  

  ( )  

For A,B   ( ),we denote 

s(a,b)=(⋃  (      )  (⋃  (      ). 

Common fixed result discussed by khan [3] can be obtained in the setting of complex valued metric space. 

Theorem 2.1 let (X,d) be a complete complex valued metric space and let S,T:X→CB(X) be multi valued mapping with 

greatest lower bound property such that, 

 
, (    ) (    )   (    ) (    )-

 (    )   (    )
  

, (    ) (    )   (    ) (    )-

 (    )   (     )

  
, (    ) (    )   (     ) (     )-

 (     )   (    )
  (     ) 

                    . Then S and T have common fixed point. 

Proof Let  x0   and x1  Sx0,Tx0. from(1.1), we have 

 
, (      ) (      )   (      ) (      )-

 (      )   (      )
  

, (      ) (      )   (      ) (      )-

 (      )   (       )

  
, (      ) (      )   (       ) (       )-

 (       )   (      )
  (       ) 
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since x1=Sx0,so we have  
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there exist x2                  , 
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By using  the greatest lower bound property of s and T, we have 
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Similarly, 

 (     )  (     )| (     )| 

                               (     ) | (     )| 

 (     )   (     ) | (     )| 

 (     ) | (     )| 

                            (     ) | (     )| 

Repeatedly we can construct a sequence {xn} in x such that n=0,1,2,3…, 

|d(xn,xm)|   |d(xn,xn+1)| +|d(xn+1,xn+2)|+…+|d(xm-1,xm)| 
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 (     ) | (     )| 

With    (     )   ,                               

For m.n,we have 

|d(xn,xm)|   |d(xn,xn+1)| +|d(xn+1,xn+2)|+…+|d(xm-1,xm)| 

                   [(     )  (     )      (     )   - | (     )| 

And so 

|d(xn,xm)|  .
(     ) 

  (     ) 
/ | (     )| 

And so 

|d(xn,xm)|  .
(     ) 

  (     ) 
/ | (     )| →        →   

And hence we have a Cauchy sequence {xn} in X, also X is complete and hence the convergent point will be in X 

i.e.         xn→       →            show that v                  (   ) 
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by definition 
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d(x2n+1,vn) 
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by using the greatest lower bound property of S and T, we have 
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By letting n→   in above inequality, |d(v,vn)| →  . By the definition of convergence we have   →       →

                                                                                                    

Corollary 2.1: 

The above theorem can also be generalized as, 

Let (X,d) be a complete complex valued metric space and let S,T:X→CB(X) be multi valued mapping with greatest lower 

bound property such that, 
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             . Then S and T have a common fixed point. 
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